

The Research-Based Benefits of Exercise for Parkinson's

Dr. Matthew Sacheli, Research Program Manager, BC Brain Wellness Program, UBC

University of British Columbia

Exercise = better health

Canadian Physical Activity Guidelines

FOR ADULTS - 18 - 64 YEARS

Guidelines

To achieve health benefits, adults aged 18-64 years should accumulate at least 150 minutes of moderate- to vigorous-intensity aerobic physical activity per week, in bouts of 10 minutes or more.

It is also beneficial to add muscle and bone strengthening activities using major muscle groups, at least 2 days per week.

More physical activity provides greater health benefits.

Canadian Physical Activity Guidelines

FOR OLDER ADULTS - 65 YEARS & OLDER

Guidelines

To achieve health benefits, and improve functional abilities, adults aged 65 years and older should accumulate at least 150 minutes of moderate- to vigorousintensity serobic physical activity per week, in bouts of 10 minutes or more.

It is also beneficial to add muscle and bone strengthening activities using major muscle groups, at least 2 days per week.

Those with poor mobility should perform physical activities to enhance balance and prevent falls.

More physical activity provides greater health benefits.

Reduced risk of:

- Heart disease
- Stroke
- High blood pressure
- Certain types of Cancer
- Type 2 diabetes
- Osteoporosis
- Overweight and obesity

Benefits include:

- Fitness
- Strength
- Mental health (morale and self-esteem)

And also help to:

- Maintain functional independence
- Maintain mobility
- Improve fitness
- Improve or maintain body weight
- · Maintain bone health

Exercise and Parkinson's Disease

Motor complications

- Tremor
- Rigidity
- Balance
- Posture
- · Gait (walking)
- Muscle weakness
- Aerobic capacity (fitness)

Non-motor complication

- · Cognition
- Mood/depression
- Sleep
- · Autonomic function

Activities of Daily living

- · Getting out of a chair
- · Getting dressed
- Preventing falls
- Maintaining independence
- · etc...

Neuroprotection?

- · Neuroprotection
 - Prevent further death of neurons
- · Neurorestoration
 - · Formation of new neurons

Motor complications

- Tremor
- Rigidity
- Balance
- Posture
- Gait (walking)
- Muscle weakness
- Aerobic capacity (fitness)

Non-motor complication

- Cognition
- Mood/depression
- Sleep
- Autonomic function

Activities of Daily living

- · Getting out of a chair
- Getting dressed
- Preventing falls
- Maintaining independence
- etc...

Neuroprotection?

- Neuroprotection
 - Prevent further death of neurons
- Neurorestoration
 - Formation of new neurons

Why is exercise beneficial for Parkinson's disease?

In animal models, exercise:

- Increases dopamine receptors (Petzinger et al., 2007; Vuckovic et al., 2010)
- · Increases growth of brain cells (Toy et al., 2014)
- Protects against neurotoxic agents and to promote recovery (Tillerson, Caudle, Reveron, & Miller, 2003).
- Decreases toxin-induced neuroinflammation (Real et al., 2017)

How does exercise change the brain in someone with Parkinson's disease?

Hypotheses

- Exercise has a beneficial effect on brain plasticity as evidenced by enhanced dopaminergic responsiveness
- Exercise may confirm long term benefits via modulation of abnormal neuroinflammation

Exercisers vs. Non-exercisers: PET and fMRI study

VS.

Habitual exercisers n=9

Sedentary n=8

Evaluating people with PD who exercise compared to people who do not exercise

- Dopamine release in response to exercise using PET
- · Brain activity in response to reward using fMRI
- Motor function
- Mood/depression/apathy
- Cognition

edentary n=8

Measuring DA release with PET: [11C] Raclopride

Intervention

Neuroplasticity

dopamine

Dopamine

Raclopride

Dopamine

Raclopride

Dopamine

Raclopride

Dopamine

Dopamine

\$fMRI monetary reward task

Anticipation - 10 seconds

 Subjects are shown the winning cards out of the four cards. Anticipation period (10 s duration).

The cards are shuffled. Anticipation period (10 s duration).

The cards are shuffled. Anticipation period (10 s duration).

 The subject has 5 seconds to pick a card by pressing a button on the hand-held controller. Anticipation period (10 s duration).

Reward - 10 seconds

- \$0.50/ trials
- · 4 probabilities of winning
 - 0, 50, 75, 100%
- 20 trials per probability

VS.

Habitual exercisers n=9

Sede

Evaluating people with PD who exercise compared to people who do not exercise

- Dopamine release in response to exercise using PET
- Brain activity in response to reward using fMRI
- Motor function
- Mood/depression/apathy
- Cognition

Exercise induced dopamine release is higher in PD habitual exercisers

Habitual exercisers have more dopamine release in the caudate, especially in the more affected hemisphere

Sedentary

Baseline

Post Exercise

INDIUMI CACICISCIS

Habitual exercisers have more dopamine release in the caudate, especially in the more affected hemisphere

Habitual exercisers have greater activation in the 'reward' circuit

- Habitual exercisers have increased response to monetary reward at 75% probability
- Exercise may change reward connectivity
- · Could explain why exercise makes you feel good.

Habitual exercisers have greater activation in 'reward' circuit

- Habitual exercisers have increased response to monetary reward at 75% probability
- · Exercise may change reward connectivity
- · Could explain why exercise makes you feel good.

- Habitual exercisers have increased response to monetary reward at 75% probability
- Exercise may change reward connectivity
- · Could explain why exercise makes you feel good.

Exercisers vs. Non-exercisers: PET and fMRI study

VS.

Summary

- Habitual exercisers showed greater dopamine release in the caudate
- Habitual exercisers showed greater activity in the ventral striatum
- Habitual exercise = greater dopamine function...?

Limitations

- Retrospective cohort study
- Do people have better dopamine function because they exercise or,
- Do people exercise because they have better dopamine function?

Prospective cohort study is needed

Summary

- Habitual exercisers showed greater dopamine release in the caudate
- Habitual exercisers showed greater activity in the ventral striatum
- Habitual exercise = greater dopamine function...?

Limitations

- Retrospective cohort study
- Do people have better dopamine function because they exercise or,
- Do people exercise because they have better dopamine function?

Prospective cohort study is needed

Can exercise change the brain?

Determine the effects of exercise on:

- Dopamine release (motor symptoms)
- Active of the ventral striatum (reward/pleasure)
- Neuroinflammation (sub-set of the subjects)

3 months of exercise

- 3x/ week
- 36 sessions
- 45-60 minutes/ session

lasticity

VS.

Cycling n=20

Stretching/yoga n=15

Determine the effects of exercise on:

ing/yoga n=15

ercise on:

Stretching/yoga n=15

Determine the effects of exercise on:

- Dopamine release (motor symptoms)
- Active of the ventral striatum (reward/pleasure)
- Neuroinflammation (sub-set of the subjects)

Dopamine release increases after aerobic exercise

Pre-exercise - Control

Baseline

Post-exercise - Control

Baseline

Pre-exercise – Aerobic

Baseline

Post-exercise – Aerobic

Caudate Ant Putamen Mid Putamen Pos Putamen

Conclusions:

- Increased dopamine release in the caudate after aerobic exercise
 - Caudate is related to cognitive function, which may explain why many exercise programs show improvement to cognitive function

Exercise is beneficial for PD

Activation of reward pathway increases after aerobic exercise

Anticipation - 10 seconds

Reward - 10 seconds

\$0.50/ trials
4 probabilities of winning
0%
50%
75%
100%

- Increased activity in the ventral striatum after acrobit exercise
- No change in the control grou
- which is associated with dopamine release
- which is associated with dopamine release

 Good feelings after exercise

aerobic exercise

Anticipation - 10 seconds

 Subjects are shown the winning cards out of the four cards. Anticipation period (10 s duration).

3. The cards are shuffled. Anticipation period (10 s duration).

The cards are shuffled. Anticipation period (10 s duration).

 The subject has 5 seconds to pick a card by pressing a button on the hand-held controller. Anticipation period (10 s duration).

Reward - 10 seconds

- \$0.50/ trials
- 4 probabilities of winning
 - . 0%
 - 50%
 - 75%
 - 100%

- Increased activity in the ventral striatum after aerobic exercise
- No change in the control group
- Exercise changes the area of the brain related to reward, which is associated with dopamine release
 - Good feelings after exercise

Effect of exercise on neuroinflammation in Parkinson's disease

Scanned 10 subjects with [11C]PBR 28 - a measure of neuroinflammation -

1) SUV analysis

- Increase in binding of [11C]PBR 28 after the control intervention in the:
 - Putamen
 - · OFC
 - · PPN
- Reduction of binding after the aerobic intervention in the:
 - Thalamus
 - · Globus pallidus
 - · Cerebellum.

2) SUVr analysis – Cerebellum reference

- The disease relevant pattern of decreased neuroinflammation observed after aerobic exercise disappeared.
- The only brain area that showed a significant result was the PPN

There is no conclusive evidence that aerobic exercise decreases neuroinflammation in subjects with PD

Summary

Habitual exerciser:

- Greater dopamine release in the caudate compared to nonexercisers
- Greater activation of the ventral striatum at 75% probability

Aerobic exercise increased:

- Dopamine release in the caudate
- Activation in the ventral striatum at 75% probability

Why is exercise good for PD? - DOPAMINE!

- Increases dopamine release
 - Motor improvements
 - · Non-motor improvements
- Increases activity of the ventral striatum
 - · Motivation to exercise
 - Positive feelings after exercise

The benefits of exercise in PD are the result of neurological changes to the dopaminergic system

striatum at 75% probability

Why is exercise good for PD? - DOPAMINE!

- Increases dopamine release
 - Motor improvements
 - Non-motor improvements
- Increases activity of the ventral striatum
 - Motivation to exercise
 - Positive feelings after exercise

The benefits of exercise in PD are the result of neurological changes to the dopaminergic system

Take home messages

Exercise is even more important for people with PD

- Recommendations
 - Speak with your doctor
 - Do what you enjoy
 - Find a group
 - Do what you can tolerate
 - · Switch it up
 - Aerobic
 - · Resistance training
 - Balance training
- · Need ideas?

www.parkinson.ca

Physical Activity and Parkinson's Disease

Get Active and Stay Active!

- People with Parkinson's who exercise fare better over time than those who are not active.
- Physical activity should be initiated early in the diagnosis and be a life-long commitment.
- Engaging in aerobic activity, along with other activities for strength, flexibility and balance, improves Parkinson's symptoms and sense of well-being.

Why Aerobic Activities?

- Aerobic activities make the body's large muscles move in a rhythmic manner for a sustained period of time.
- Aerobic activities improve physical fitness, including strength and endurance.
- Aerobic activities have a positive effect on slowness and stiffness, as well as mood, and quality of life.
- Examples: brisk walking, swimming, cycling, dancing, water aerobics, skating, hiking, treadmill or elliptical, Wii

Why Flexibility Activities?

- Flexibility or stretching exercises improve mobility, increase range of motion, and reduce stiffness.
- Improving range of motion affects posture and walking ability making everyday activities easier.

Examples: Tai Chi, stretching

Why Strengthening Activities?

- Strengthening activities improve muscle strength, walking speed, posture and overall physical fitness.
- Improving strength will help everyday activities, such as getting up from a chair, easier to manage.
 Examples: yard work or gardening, weights/resistance (free weights, elastic bands, body weight)

Why Balance Activities?

- Balance activities improve posture and stability.
- Better balance reduces the fear of falling and helps in performing daily tasks.

Examples: Yoga, hiking, Wii

The contents of this document are provided for information purposes only, and do not represent advice, an endorsement or a recommendation with respect to any product, service a enterprise, and/or the claims and properties thereof, by Parkinson Canada

Get Started

- Consult your doctor before starting an exercise program, especially if you have other health issues or are over 60.
- Work with a physical therapist/physiotherapist to develop a specific program that meets your needs. A physiotherapist can ensure you are performing activities safely and that they are right for you.
- Choose a variety of activities to reduce boredom.
- Have fun! Choosing activities you like will help you stay with a program.

www.parkinson.ca

The only prescription with unlimited refills.

Questions?

